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Response behaviour of hot wires in shear flow 

By F. B. GESSNER AND G. L. MOLLER 
Department of Mechanical Engineering, University of Washington 

(Received 2 July 1970 and in revised form 28 October 1970) 

The response characteristics of a hot wire operated at  constant temperature 
and exposed to a mean-velocity gradient along its length are examined both 
analytically and experimentally. The shear sensitivity of local wire temperature 
distributions, as measured with an infrared microscope, are compared with 
predicted temperature distributions in order to select a convective heat transfer 
correlation which can be applied locally along a wire in shear flow. On the basis 
of this correlation, the steady-state and dynamic response behaviour of platinum 
and tungsten wires in shear flow are examined by means of computer-generated 
data. Response curves of general applicability are presented which can be used 
to correct local mean-velocity and turbulence intensity measurements whenever 
a mean-velocity gradient exists along a wire. 

1. Introduction 
Previous work has centred on the response characteristics of hot wires in a 

uniform mean flow as a function of Reynolds number, Mach number, overheat 
ratio, sensitivity to yaw, and wire length-to-diameter ratio. Champagne, Sleicher 
& Wehrmann (1967), as well as Friehe & Schwarz (1968)) present summaries of 
work that has been done on steady-state response behaviour in uniform incom- 
pressible flow. Both references also discuss procedures for correcting Reynolds 
stress measurements with inclined wires when the convective heat loss is altered 
by tangential cooling effects. The present state of knowledge with respect to 
dynamic response behaviour in a, uniform flow is well summarized by both 
Corrsin (1963) and Hinze (1959, chapter 2)- 

In  contrast, very little work has been done in examining the response behaviour 
of hot wires exposed to a non-uniform mean flow. Specifically, the analyses of 
Mattioli (1956) and Furth (1956), as discussed by Corrsin (1963), were the only 
pertinent references found in the literature. The results of their analyses indicate 
that the presence of a mean-velocity gradient along a wire alters the local wire 
temperature distribution. Neither Furth nor Mattioli, however, examined the 
influence of a non-uniform mean flow on wire calibration, i.e. convective heat 
loss behaviour, or dynamic response behaviour. 

The present study was undertaken, therefore, in order to investigate in some 
detail the response behaviour of hot wires when exposed to a mean shear. As 
an initial effort, hot wires normal to the mean-flow direction in the presence of a 
linear mean-velocity gradient are considered herein. For purposes of examining 
the effect of a linear mean shear, it is expedient to define a shear parameter X 
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as ( A o / a c ) / ( l / d ) ,  where A B  is the mean-velocity increment across the wire, 
nc is the mean velocity at  the wire centreline, and l /d  is the length-to-diameter 
ratio of the wire (refer to figure 1). The above definition for S can be rationalized 
by first noting that any shear parameter formulation must depend on a?@z or, 
equivalently, Au/l since AU/l=  an/&. In order to define a dimensionless shear 
parameter, it is necessary to select both length and velocity scales which can be 
used to normalize Au/l.  With reference to figure 1, these scales are most suitably 
chosen as d and gc, respectively. Although it may not be physically obvious that 

FIGURE 1. Shear parameter formulation: S z (AO/DJ/(Z/d). 

d is associated with mean-shearing effects, this variable does influence the re- 
sponse characteristics of a wire exposed to a mean shear. This can be demonstra- 
ted by noting that results for overall response behaviour depend ultimately on 
the solution to either a steady-state or time-dependent wire energy balance, 
both of which contain terms involving d2 and d4 (refer to  equations (1) and ( 7 ) ) .  

On the basis of the above shear parameter formulation, S is invariant for 
wires of a given diameter but of different length exposed to a given mean-velocity 
gradient with a specified mean velocity at  the wire centre. This means that the 
relative influence of a mean shear on the response characteristics of wires of fixed 
diameter but of different length can be examined by comparing results for 
different lld wires at  the same value of S. 

The influence of S on wire response behaviour will be examined in subsequent 
discussion for different specifications of wire material, length-to-diameter 
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ratio, and overheat ratio. In  the present study the overheat ratio is defined 
as 2= (Rw,m- R,)/R,, where R, is the wire resistance at  the ambient tem- 
perature and Ew,m is the resistance of the wire evaluated at  the overall mean 
temperature of the wire under heated conditions. 

2. Analytical considerations 

In order to examine the influence of a mean-velocity gradient on the steady- 
state response of a hot wire, it is first necessary to determine the influence of the 
gradient on the local wire temperature distribution, which, in turn, affects its 
convective heat loss characteristics. An energy balance applied to an internally 
heated, finite-length wire includes several energy transfer mechanisms. In 
general, the various mechanisms are: (i) internal heat generation, (ii) axial heat 
conduction, (iii) radial heat conduction, (iv) energy transfer between the wire 
and the surrounding fluid by means of forced convection, (v) free convection, 
(vi) radiation, and (vii) energy losses resulting from a thermoelectric effect at 
the wire-probe support junctions. 

On the basis of measurements by Van der Hegge Zijnen (1956), Hinze suggests 
that free convection can be neglected when Ref > 0.5 and GrfPrf < lo4, where 
Re,, Grf, and Prf are the Reynolds number, Grashof number, and Prandtl 
number with fluid properties evaluated at  the mean film temperature, Tf, with 
Tf = S(pw + Tm), where pw = local mean wire temperature and T, =ambient 
temperature. The latter condition was satisfied locally along a wire over the 
range of variables considered herein, so free convection effects were neglected 
in the analysis. Also neglected were radiation losses, which were estimated to be 
a t  least two orders of magnitude smaller than losses by forced convection. Pos- 
sible energy dissipation because of thermoelectric effects was also estimated 
to be small on the basis of comments by Davies & Fisher (1964). Finally, for the 
Z/d ratios considered herein (Z/d > 200) radial heat conduction effects were 
neglected without reservation. 

In  accordance with the above considerations, a steady-state energy balance 
applied to an elemental wire length yields the following differential equation : 

2.1. Steady-state response analysis 

where f = wire current; kw = kw(pw), the local wire thermal conductivity; 
pw = pw(Tw), the local wire resistivity; p = wire perimeter; a = &xi2, the wire 
cross-sectional area; z = z(pw, g) ,  the local convective heat; transfer coe6cient. 

The dependency of kw and pw on Fw over the temperature range of interest in 
this study (20 "C < Fw < 400 "C) can be written as 

- 

where kwo and pwo are reference values and p, cl, and c2 are the temperature 
coefficients. The values utilized in the analysis for both platinum and tungsten 
wire materials are given by Moller (1969). 

29-2 
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In order to develop an expression for the convective heat transfer coefficient as 
a function of local mean velocity and wire temperature, correlations developed 
for uniform flow over a wire at uniform temperature were applied locally along a 
wire. Because Mach number and Knudsen number effects are negligible over the 
range of conditions specified herein, two empirical correlations developed by 
Kramers (1946) and Collis &Williams (1959) for incompressible flow were utilized. 
Both relationships can be written in the following generalized form : 

Nuf = ( A  +BRefn) (Tf/T,)al, (3) 

where Xu, = Ed/k,, the Nusselt number; Re, = Ud/v,, the Reynolds number; 
A ,  B, n, and a, are numerical constants (provided the Prandtl number is con- 
stant in Kramers' correlation) and assume different values for each correlation. 
S h e  these correlations were first proposed, Kjellstrom & Hedberg (1968) and 
Davies & Bruun (1968) have developed alternate empirical correlations which 
they feel more accurately describe the convective heat loss behaviour of heated 
wires. None of these investigators, however, develop correlations in dimensionless 
form which apply over a wide range of operating conditions, so only (3) was 
applied in the present work. 

The dependency of k, and v, on local wire temperature was evaluated from 
k, = k,(Tf/Tm)a2, v, = v,(T,/T,)"S, with a2 = 0.836 and a3 = 1.714, for air over 
the range of values of T, and Tw considered herein. Both expressions were 
expanded in series form by introducing a normalized temperature difference 
0 = (pto - T,)/T,. For platinum and tungsten wires operating at  A? < 0-8, the 
following generalized form was developed : 

with 
[ -1 
1 - 2 @ 1 + a 2 ) ,  

& = Q(a1+a2)("1-"2- 11, 

71 = t(a,+a,--a,l.l), 
y 2  = Q(a1+a2-a3n) (a1+a2-a3n- 1). 

If the expressions given by (2) and (4) are substituted into ( l ) ,  and if 7 = z/Z, 
a normalized differential equation for the wire temperature distribution can be 
written as 

(C, + C20) d20 /dy2  + C , ( d @ / d ~ ) ~  + F,(7) 0 3 +  F2(q) O2 +F3(7) 0 + C3 = 0, (5) 
with 
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where, in reference to figure 1, for a linear mean-velocity gradient 

D= Dc[l + (AV/Dc) ( i - r ) ] .  (6) 

The boundary conditions that apply to (5) are that 0 = (Fs-Tm)/Tw a t  7 = 0 
and 7 = L, where is the wire temperature at  each wire-probe support junction, 
which, in general, is not equal t o  T, unless dJd B 1, where d, is the probe support 
diameter. Initially, an attempt was made to solve (5) subject to the boundary 
conditions by means of a fourth-order Runge-Kutta technique. The solution 
diverged, however, regardless of the manner in which an initial assumed tem- 
perature gradient at  one probe support was incremented and although the step- 
size was reduced to 0.1 % of the wire length. As an alternate approach, (5) was 
written in first central finite-difference form and solved successfully by means of 
an iterative technique using matrix inversion. Details of the numerical com- 
putations are given by Moller (1969). 

2.2. Dynamic response analysis 

The influence of thermal lag and non-uniform wire temperature on the dynamic 
response behaviour of a hot wire in shear flow can be examined by analyzing 
a time-dependent energy balance applied to the wire, namely 

(7) 
a 
ax 

a2- (kwaTw/az)+12p,-pah(Tw-T,) = pw~wa2aTw/a6, 

where p ,  = wire mass density; c, = wire specific heat; 6 = time; and h, T,, I 
and pw are instantaneous values. 

A n  expression for h in terms of the other variables can be developed by apply- 
ing (3) locally along the wire. The justification for this procedure has been dis- 
cussed by Corrsin (1963). For reasons to be given later, only Kramers' correlation 
will be utilized in the present development. Consider now constant-temperature 
operation forwhich U = u(z) +u'(z, 6 ) ;  T, = Fw(z) +tk (z ,  6 ) ;  pw = is,(z) +p&, 6); 
and I = 1 + i'(0). Assume further that velocity fluctuations are small so that 
second-order effects can be neglected. If the above conditions are applied to 
(7), and the resulting equation is integrated over wire length, it follows that 

+ 21i' pWdz  = [ A  + B(Dd/vf)"] 11.,pkdz Sk Sk 
q+f(d/vf)n ( p w - p w m ) ~ n - l u ' d z  

where @f 3 p a k f / p w o ~ l d .  
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In order to proceed with the integration, it is necessary either to know pL(z) 
or assume that p: is uniform along the wire. The latter assumption will, of 
necessity, be applied now, although it is only an approximation. Further sim- 
plifications can be applied if it  is noted that the temperature dependency of 
$f/v';" is rather weak. It is permissible, therefore, to let = $f ,m/vt ,n,  where 
the subscript m denotes quantities referred to the overall mean wire temperature, 
Tu,,m. For the moderate mean wire temperature variations associated with the 
present work, the first integral term on the right-hand side of (8) can be written as 

- 

where exact equivalency applies if second-order effects are neglected. Finally, 
pw and c, are essentidly constant for both platinum and tungsten wires over 
the temperature range of interest (20' C < Tw < 400 "C). On the basis of these 
assumptions (8) simplifies to the following form : 

where, on the basis of (6) and the binomial expansion, 

wit,h f l (n) = n(n- 1)/3!, 

fz(n) = n(n- l ) (n-2) (n-3) /5! ,  

where fl = - 1/24 and fz = - 11128 for Kramers' correlation with n = 0.5. Since 
0 < AU/BU, < 1, and the numerical coefficients of the higher-order terms 
decrease rapidly, terms of 0[(AU/2Uc)6] and higher can be negIected in (1 1) .  

In reference to (lo),  the resistivity fluctuation, p;, corresponds to a resistance 
fluctuation across the wire, r&, i.e. pk = .&all, and r;, in turn, is related to the 
current fluctuation, i', as follows: i' = - gtrIrL, where g,, is the transconductance 
of the amplifier circuit of the anemometer (Hinze 1959). By means of the above 
relationships, (10) can be written as 

- -  
- _  

Equation (12) is of the form 
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where M can be characterized as the time constant of the hot-wire probe- 
anemometer system. IfRef = U,d/v,,,, andifit isnoted that $f,ln = nakf,m/pwo5;, 
then M can be expressed as 

M =  

- 

p", c, a2 

nakf,,(A + B RT) [l +fl(n) ( S Z / ~ C ~ ) ~  +fZ(n):(SZ/2d)*] - p w o ~ l ( f 2  - 242Rw,,gt,)' 
(14) 

On the basis of results to be discussed shortly, f decreases monotonically as 
S increases for constant-temperature operation at  a fixed value of %,. Since 
gtr - O(l/Rw,m), or larger, and fl(n) andf2(n) are negative coefficients, an increase 
in S causes both terms in the denominator of (14) to become smaller and, in 
turn, M to become larger. This, of course, has an undesirable effect on M ,  which, 
on the basis of (13), should be as small as possible to  minimize thermal inertia 
effects. The relative influence of 8 on M for constant-temperature operation will 
be discussed in more detail later. 

3. Experimental technique 
The behaviour of a hot Wipe in shear flow was examined experimentally by 

taking wire temperature profile measurements in a free-turbulent circular jet in 
the region where similar velocity profiles prevail. In  the central portion of the 
jet (0.5 < r/r* < 1.5, where T is radial distance from the jet centreline and r* is 
the value of T at which ois one-half the centreline velocity), axial mean-velocity 
profiles were essentially linear. By selectively locating a hot wire at  points along 
a line of constant axial mean velocity downstream of the jet exit, it was possible 
to take measurements with the free-stream Reynolds number constant 
(Re, = K d / v a )  while varying the shear parameter, S ,  in a systematic manner. 

A Pitot tube whose axial and radial positions in the jet could be determined to 
within 0.01 and f 0.001 in., respectively, was used in conjunction with an 
inclined manometer to measure mean-velocity profiles. All hot-wire measure- 
ments in the jet were made at  T, = 30 f 0-5 "C with 0.001 in. diameter 
wires for which l /d N 300. Sigmund Cohn pure reference grade platinum wire 
was used, and the hot wires were mounted on music wire supports in a manner 
suggested by Champagne (1966). The wire supports were 0-025 in. in diameter and 
tapered at the end with dJd N 10 a t  the wire-support junctions. Each wire 
was operated on a constant-temperature basis by means of a Thermo-systems 
Model 1010 Anemometer. Local wire temperature distributions were measured 
by means of a Barnes Engineering RM-2A infrared microscope with an electronic 
control unit whose voltage output was read out on a digital voltmeter. 

In  order to correlate the output of the microscope with local wire temperature, 
a calibration procedure using platinum foil was applied initially (Champagne 
1966). This technique yielded unsatisfactory results, however, because free 
convection from the platinum foil caused the response of the microscope to be 
unstable and non-reproducible. As an alternate approach, a 0.001 in. diameter 
platinum wire with l /d = 2500 was fabricated, and the central portion of the wire 
was scanned with the microscope for several operating values of overheat ratio. 
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This procedure yielded a calibration curve interrelating microscope - response with 
wire centreline temperature, Fw,c, assuming that Fw,c II Tw,m. The calibration 
curve tended to underestimate, therefore, the local wire temperature for a given 
voltage output from the microscope. In  order to correct this curve, the wire was 
scanned with the microscope along its entire length for several values of pw,m. 
The calibration curve was then used to evaluate local wire temperature distribu- 
tions, and the percentage deviation of FW,, from Fw,,, at each overheat ratio was 
determined by means of a planimeter. This same percentage deviation ( - 2 to 3 yo) 
was applied to the original calibration curve in order to correct the initial de- 
ficiencies in the curve. 

By calibrating in the above manner, it was not necessary to correct the calibra- 
tion curve for differences in ambient surroundings between calibrating and opera- 
ting conditions (Champagne 1966). Furthermore, by calibrating with a wire 
instead of foil, it was not necessary for the wire to fill completely the spot size of the 
objective lens. This meant that measurements could be made at a relatively large 
focal length to minimize possible interference effects between the microscope 
lens and the flow field. 

F. B.  Gessner and G. L. Moller 

4. Results and discussion 
4.1. Temperature distributions 

The influence of a mean-velocity gradient on the local measured temperature 
distribution along a wire under typical operating conditions is shown in figure 2. 
For all cases the overheat ratio calculated by integrating each temperature pro- 
file (0.777 < # < 0.798) agreed favourably with #= 0.8, as set on the ane- 
mometer. The figure indicates that an increase in the mean-velocity gradient 
along a wire causes an increase in the skewness of its local temperature distri- 
bution. The wire end support temperatures, however, are essentially indepen- 
dent of S for 0 ,< X < 3 x and, on the basis of additional data, also xea for 
6.82 < Re, < 21.4. Over the range of values of S and a, mentioned above, 

3" C and 86 ? 3 "C for S'? = 0.4 and 0.8, respectively. These temperature 
values are based on extrapolated data since the measured wire temperatures at  
the end supports were excessively high, an effect also noted by Champagne 
(1966) in his experiments. 

The applicability of Kramers' and Collis & Williams' correlations locally 
along a wire was examined by comparing experimentally measured temperature 
distributions with those predicted from the analysis. Typical results shown in 
figure 3 indicate excellent agreement between the measurements and predicted 
temperature distributions utilizing Kramers' correlation. The distributions 
based on Collis & Williams' correlation, however, deviate somewhat from the 
experimental data and also indicate abnormal temperature gradient behaviour 
at  the end supports. These effects diminish for higher overheat ratios (figure 4) 
but the same discrepancies still exist. 

In  order to seek an explanation for this behaviour, temperature distributions 
based on Collis & Williams' correlation were generated from the computer 

= 60 
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FIGURE 3. Comparison between analytical and experimental temperature distributions : 

E/d N 300, X N  0.4, %, = 6.82. - - -, Collis & Williams; - , Kramers. 
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FIGURE 4. Comparison between analytical and experimental temperature distributions : 

Z/d N 300, &' 2: 0.8, = 6.82. - - -, Collis I% Williams; - , Kramers. 

71 
FIGURE 5. Effect of end support temperature variations on wire temperature distributions 
(Collis & Williams' correlation): Z/d 2: 300, 2 = 0.4, Re, = 6.82, T, = 3OoC, S = 0.  
ps in OC: - , ,  90. - - -, 60; - - -, 30.  
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program for S = 0 with T, > T,. (Note that, in figures 2-4, Fs > T, for all cases.) 
The results of these computations are shown in figure 5 and indicate that the local 
wire temperature distribution approaches normalcy as T, approaches T,. For 
the condition when F, = T,, additional computations showed that both Kramers’ 
and Collis & Williams’ calculations yield essentially the same temperature dis- 
tributions over a range of values of S, and Re,. Because further computations 
were contemplated with Fs 2 T,, however, all subsequent analytical results 
reported herein are based on Kramers’ correlation. 

0 0.2 0.4 0.6 0.8 1 .o 
7 

FIGURE Influence of a mean-velocity gradient on wire temperature c-tributions 
(Kramers’ correlation): l/d 2: 300, 2f N 0.8, Re, = 21.4. 

Figure 6 shows a comparison between theoretical and measured temperature 
distributions for a free-stream Reynolds number (a, = 21.4) greater than that 
corresponding to the distributions shown in figures 3 and 4 (Re,  = 6-82). In  this 
instance the agreement between theory and experiment for S = 3 x 10-3 is not 
as good as that shown in figures 3 and 4. Kramers’ correlation is apparently un- 
able to  describe precisely the local convective heat loss characteristics of a heated 
wire when a strong Reynolds number variation exists along its length. (For the 
conditions shown in figures 3 and 4, &, varies from 3.7 to 9.9, whereas, in figure 
6, the variation is from 11.8 to 31.2.) 
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4.2. Steady-state response behaviour 

For steady, uniform, isothermal mean flow over a heated wire at uniform tem- 
perature, the local Nusselt number is also uniform and, on the basis of (3), its 
functional dependency can be written as 

Nu, = Nuf(Ref, Prf,Tf/T,). (15) 

If the wire is of finite length, however, and if a mean-velocity gradient exists 
along its length, then the local Nusselt number is no longer uniform. Further- 
more, if d,/d is relatively small, then Fs > T,, in general, and an end support 
temperature loading factor must be taken into account. Under these circum- 
stances, it is expedient to define an overall Nusselt number for the wire, Nu,, 
whose functional dependency can be expressed as 

Nu, = Nuf (Ref, Prf , Tf IT,, ps/Tm, l / d ,  8). 

An explicit form for Nu, can be developed by integrating (1) over wire length to 
yield 

(17) 
Nu, = IQw,rn -ta[kw,,(dpw/dz) i - k w , o ( d p w / d z M  

nkf, rnl(Fw, m - T m )  
If (17) were to be used to generate response curves interrelating Nu, with the 

parameters of interest, then application of correction curve8 based on these 
plots would necessarily involve evahation of the end conduction loss term in 
(17), i.e. a[Jc,,,(dTw/dz)l- k w , o ( d ~ w / d z ) o ] .  This is, of course, impractical in most 
situations, and therefore it is preferable to develop response curves referred to 
an overall wire Nusselt number which excludes end conduction losses, namely 

Both a, and Tu;, however, are sensitive to Fs/T,, in general, and, before a 
final selection is made between the two Nusselt numbers, it is worthwhile to 
examine their relative dependency on FJT,. The computer program was used, 
therefore, to generate response curves of and Nu;, ,/Nu; as a function 
of TJT, for typical operating conditions, where Nu,, , and Nu;, , are evaluated 
at  the condition Fs = T,. 

Figure 7 shows the results of these computations. With reference to the figure, 
end support temperatures measured in the present study with ds/d 2: 10 cor- 
respond to Fs/Tw 21 1-10 and 1.18 for Z = 0.4 and 0.8 respectively, and influence 
N.u; to the extent that E;,,/ru; N 1.025 for both cases. For dJd N 20, the 
measurements of Champagne (1966) indicate that TJT, N 1.02 and 1-09 for 
2 = 0.5 and 0.8, respectively, over ranges 100 6 l /d  < 400 and 8.8 6 Re, 6 14.5. 
If his results are correlated with the results shown in figure 7, then 

provided d,ld 20. This implies that response curves based on Nuiare essentially 
independent of TJT, over moderate ranges of Re,, l /d ,  and S whenever d,/d 2 20. 
This conclusion, coupled with the realization that correction curves referred to 
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can readily be applied in practice, prompted the selection of NX; as the 
correlating Nusselt number. The results which follow were calculated for !i'JT, = 1 
with T, = 20 "C, and are of general applicability as long as d,/d 2 20. 

The influence of a mean-velocity gradient on the steady-state response 
characteristics of a hot wire is shown in figure 8 for typical operating conditions. 
The distributions for S > 0 exhibit rather remarkable behaviour in that 
varies linearly with Eej ,  even though both the local mean velocity across the 

I I 

1.06 I I I I I I I I I I 

FIGURE 7. Effect of end support temperature variations on convective heat loss character- 
istics of platinum wires: l /d  = 300, %, = 6-82, T, = 30°C. Untlagged symbols, S = 0; 
flagged symbols, S = 3 x 

wire and local wire temperature are non-uniform. Computations of were 
performed a t  Re, = 2.14, 13-24,33.82, and 64.00 for both platinum and tungsten 
wires at LP = 0-4 and 0.8. For all cases, the standard deviation of the slope 
AxUi/A@, f -  as evaluated at  each value of Re,, was less than 0.012. (Computer 
results for Nu, indicated a slight, but consistent, decrease in values of the 
slope A x f / A @  with increasing values of a!.) 

The distributions in figure 8 show that the response of a hot wire becomes more 
sensitive to a mean-velocity gradient along its length as l /d increases. For a given 
l /d  wire, response sensitivity to shear can be interpreted either as a displacement 
of the effective centre of the wire or as an influence on measurements at  the actual 
wire centre. Displacement effect corrections could be generated from the results 
shown in figure 8, for example, by evaluating z e f , o / z f  or, equivalently, q,o/& 
at selected values of Nu;. For a linear mean shear as shown in figure 1, q,o/c 
can be related to a normalized displacement, Ax/& as follows: 

Ax11 = (d/Sl) (1 - Uc, o/U,.) 
where Ax is the distance that the effective centre of the wire has been displaced 
in the direction of higher velocity. 
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For a given lld wire, therefore, it is possible to replot results of the type shown 
in figure 8 as Nu; versus Azll with AD/K,o as a parameter in place of S. In order 
to apply these normalized curves to a particular wire, it is necessary to transform 
values of Nu; to equivalent values of for a particular set of operating conditions. 
If second-order temperature dependency effects are neglected, this procedure 
involves knowing Cl in order to  evaluate Fw,, - T, in (18) from 

- 
Tw,,-Tm = @w,7n-R,)lclRo, 

where R, is the wire resistance at a reference temperature To. A problem exists, 
however, in specifying a value for cl because values of Cl tabulated in the 

4 

2 

1 

0, 

I I I I I I I I I  

U 1 2 3 4 5 
- 
R 4  

FIGURE 8. Influence of a mean-velocity gradient on steady-state response behaviour of 
platinum wires: iF = 0.8. a, S = 0; b, S = 1 x 10-3; c, S = 2 x d, S = 3 x 10-3. 

literature for pure platinum and tungsten are not in close agreement for either 
material, and therefore a unique value of cl for each material cannot be specified 
from general reference data. 

Because of the above-mentioned difficulties in specifying cl, it is not possible 
t o  transform a set of normalized displacement effect correction curves to a set of 
working curves which apply universally for a given wire material. This problem 
can be circumvented, however, by treating response sensitivity to shear as an 
effect which influences measurements at the actual centre of a wire. This approach 
will therefore be adopted in interpreting the results of the present study. With 
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reference to figure 8 it can be seen that, if a mean velocity gradient exists along a 
wire, then application of the uniform flow calibration curve (8 = 0) would under- 
estimate the local mean velocity at  the centre of the wire. As an example, consider 
a platinum wire with lld = 600 t o  be located in a shear flow where S = 3 x lo+. 
If the measurements yield a value %; = 2.0, then application of the S = 0 
curve would predict a value zj = 2.40 (point A ) ,  whereas z$ actually equals 
2-75 (point B) .  This difference in values corresponds to underestimating the local 
mean velocity at  the centre of the wire by approximately 24%. 

The utilization of the response curves shown in figure 8 involves an iterative 
set of calculations because initially S is unknown and the uniform flow calibra- 
tion curve must be used to estimate velocity profile configurations. Local values 
of S along a profile can then be evaluated, and reference made to a plot similar to 
figure 8 to correct the profile. The whole procedure must be repeated until suc- 
cessive velocity values converge to within specified limits. 

The distributions shown in figure 8 are based on a particular set of reference 
data for platinum wire and, as such, are not directly applicable to platinum 
wires, in general, where thermophysical properties may vary from wire to wire. In  
order to develop correction curves of general applicability, the ratio Nui,,lNu; 
was calculated as a function of &, where the subscript 0 denotes evaluation 
at  uniform flow conditions. The results are shown in figures 9-10. These correc- 
tion curves can be applied to any uniform flow calibration curve to construct a 
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FIGURE 9. Steady-state response correction curves for platinum wires. 
-, = 0.8; - - - , &' = 0.4. 
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FIGURE 10. Steady-state response correction curves for tungsten wires. 
-- , i@ = 0.8; - - -, S = 0.4. 

at 2 = 0.4 is preferable from the standpoint of minimizing shear flow sensitivity. 
Shear flow response is a relatively strong function of lid, so that operation with 
minimum lld wires is desirable, consistent, of course, with other requirements 
imposed by frequency response and probe design considerations. 

4.3. Dynamic response ~ e h a v i o u ~  
Results discussed in the previous section can be used to estimate the influence of 
a mean-velocity gradient on turbulence intensity measurements with a single 
wire normal to the flow. Figure 8, for example, shows that, when end conduction 
losses are excluded, steady-state response curves for S 2 0 are of the form 

(19) 

where A' a n d B  denote the intercept at Ref = 0 and the slope, respectively, of each 
response curve. If a velocity fluctuation across a wire in a linear mean-velocity 

Nu; = A' + B'Z$, 

family of curves of, say, fversus gc for different values of S. The construction of a 
working plot in terms of quantities directly measurable on an anemometer is rela- 
tively simple because Nu;,,lNu; = ( f o / f ) z  = (I,/r)2 for constant temperature 
operation at  a fixed overheat ratio. 

A comparison between figures 9 and 10 indicates that the steady-state response 
behaviour of tungsten wires is slightly less sensitive to shear than platinum wires 
for a given set of operating conditions. The figures also indicate that operation 
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gradient is idealized as being spatially uniform, then (18) and (19) can be applied 
at  each instant of time. Since these equations are based on constant temperature 
operation, - let I = 4+i' ,  V, =Uc+u', R, N Rw,m, T, E Tw,m and note that 
e' = Rw,mi' = su', where e' is a voltage fluctuation and s is the wire sensitivity. 
Assume now small velocity fluctuations so that second-order effects can be 
neglected: then 

- - - - - 

If a heated wire is operated at  constant temperature in a shear flow of unknown 
characteristics it will yield a mean output (B or 1) whose correlation with the local 
mean velocity will initially be unknown. If reference is made to a uniform flow 
calibration curve without performing any corrections, then, on the basis of results 
shown in figure 8, ue and B' in (20) will be underestimated and overestimated, 
respectively. The influence that this has on wire sensitivity can be estimated 
by examining the behaviour of sols over a range of operating conditions, where 
so is the uniform flow wire sensitivity. For a given mean wire output corresponding 
to a fixed set of operating conditions, it follows that 
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FIGURE 11. Influence of a mean-velocity gradient on the sensitivity of platinum and 
tungsten wires t o  velocity fluctuations. -, 2 = 0-8; - - -, 2 = 0.4. 
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FIGURE 12. Influence of a mean-velocity gradient on the time constant behaviour of 
platinum and tungsten wires: Re, = 33.8. (a)  l /d = 400; g,, = 10 mhos, 0.4 < 2 < 0-8. 
( b )  S = 3 x gt7 = 10 mhos, 0.4 < S d 0.8. (c) l /d = 400, S = 0.8. -, platinum; 
- _ _  , tungsten. 
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The behaviour of sols over a range of operating conditions is shown in figure 11. 
The distributions are universal functions over the Reynolds number range of 
the calculations (2.14 6 Re, < 64) and indicate that wire sensitivity to fluctua- 
tions is diminished when shearing effects are present. Since e' = su', it also 
follows that, for a givenr.m.s. output voltage, iZ'/iZ; = sols, where iZ; is the appar- 
ent turbulence intensity calculated from the uniform flow wire sensitivity and 
Q' is the actual intensity. Since sols > 1 whenever S > 0,  iZ; will underestimate 
the actual intensity whenever a hot wire is exposed to a mean-velocity gradient. 
If turbulence intensity measurements are to be made with a wire which cannot 
be oriented to eliminate a gradient along its length, then the mean-velocity 
profile should first be corrected in order to determine and S at each measuring 
point and, in turn, B' from the calibration plot. The turbulence intensity may 
then be calculated from the measuredr.m.s. voltage output, &', and s, as evaluated 
from (20) or, alternatively, from figure 11 after il; has been evaluated. 
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As discussed earlier, the time constant of a hot-wire probe-anemometer system 
is influenced by the presence of a mean-velocity gradient along the wire. Results 
from the computer program were used in conjunction with (14) to generate re- 
sponse curves for M/M, where Mo is the time constant evaluated at  uniform flow 
conditions. The results of these computations are shown in figure 12, where the 
trends exhibited by the distributions should be regarded as qualitative rather 
than quantitative because of the rather limiting assumptions made in the develop- 
ment of (14). For a given l / d  wire and transconductance of the amplifier circuit, 
the upper figure shows that M/Mo increases as S increases, with tungsten wire 
being slightly less shear sensitive in comparison to platinum wire. For a given 
mean-velocity gradient the middle figure indicates that M/Mo also increases as 
l /d  increases. The gradient response of M/Mo is relatively insensitive to g,, as 
indicated by the lower figure, so selection of an operating value of g,, can be 
made independent of gradient considerations. For all cases examined herein, 
M/M, < 1.10 as long as l/d < 600 and S < 3 x Since these limiting values 
represent rather extreme conditions, it appears that the selection of a wire 
exposed to a mean shear can be made on the basis of its time constant charac- 
teristics for S = 0, as long as a possible 10 % increase in M can be tolerated. 

5. Conclusions 
The presence of a mean-velocity gradient along the length of a hot wire operated 

at constant temperature causes a skewed wire temperature distribution which 
influences both the steady-state and dynamic response characteristics of the wire. 
If a uniform flow calibration curve is used to evaluate the local mean velocity at 
the centre of a wire exposed to a mean shear, the value will be underestimated 
whenever S > 0. The presence of a mean shear across a wire will also cause a 
decrease in its sensitivity to velocity fluctuations. If the uniform flow wire sensi- 
tivity is used to evaluate the turbulence intensity at  the centre of a wire, then, for 
a given r.m.s. voltage output, the value will be underestimated whenever S > 0. 
The influence of S on both steady-state and dynamic response behaviour increases 
as l /d increases for otherwise fixed operating conditions. From the standpoint 
of minimum shear sensitivity, therefore, consistent with other considerations, 
wires with l /d N O(200) are recommended. Response sensitivity to shear increases 
slightly with an increase in overheat ratio in the range 0.4 < A? < 0.8, with 
tungsten wire being slightly less shear sensitive than platinum wire over the range 
of variables considered in the present work. 

In  order to draw still more specific conclusions about upper limits for cor- 
rections under typical operating conditions, consider the following : Assume that a 
5p platinum wire with l / d  = 400 is located in air flow where 10 < < 100 mlsec 
and T, = 20°C (3.3 < Re, < 33). If the wire is operated at  A? = 0.8 in shear 
flow where S = 2 x then o', will be underestimated by a maximum of 
4.3 % if the uniform flow calibration curve is used. If l /d is decreased to 200, then, 
over the same range of operating conditions, this percentage difference will 
decrease to 1.3%. Over the Reynolds number range of the calculations 
(2-14 < Re, < 64), 6; calculated from the uniform flow wire sensitivity will 

-- 
30-2 
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underestimate C' by a maximum of 5.8 % for an l /d = 400 wire and the operating 
conditions cited above. If lld = 200, this percentage difference decreases to 
1.4%. For tungsten wires and lower overheat ratios, the above-mentioned per- 
centage differences are even less. Under typical operating conditions, therefore, 
shear flow corrections will be on the order of only 1 yo or less, provided l /d  < 200 
and S Q 2 x For applications where larger l /d  wires must be used, shear 
flow corrections can become important, however, especially if a wire is exposed 
to  a highly sheared mean flow along its length. 
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